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The strength of a coating can be increased if deposition is carried out in such a way that 
the constituent particles are deposited on top of previously deposited particles that are still 
cooling (are thermally active) [I]. The probability conditions for the formation of coatings of 
thermally active coatings were calculated in [2] with the assumption that N previously de- 
posited particles are not in contact with one another. 

In the present study, we calculate the probability P0 throughout a range of rates of 
flow G (kg/sec). It is shown that P0 is expressed linearly through the porosity of the coat- 
ing and depends on the dimensionless parameter E~ = NR2/p 2 (where R is the radius of the disk 
of an adherent particle and p is the radius of the deposition spot). 

i. In plasma-spray deposition, an attempt is made to use particles of similar dimen- 
sions. The radii R 0 of spherical particles equal in volume to the deDosited particles lie 
within the range I0-i00 um, while p ~ 10 -2m. Thus R~/p 2 ~ 10-6-10 -4 . As in [2], we will 
assume that the coating is formed of disks of radius R and height h such that 

4~R~/3 = ~mh,  g 2 = R~/9 ~ << 1. ( 1 . 1 )  

L e t  p ( x ,  y )  be t h e  p r o b a b i l i t y  d e n s i t y  o f  t h e  l o c a t i o n  o f  t h e  c e n t e r  o f  mass o f  a p a r t i c l e  
b e i n g  d e p o s i t e d  a t  t h e  p o i n t  o f  t h e  s u b s t r a t e  w i t h  t h e  c o o r d i n a t e s  ( x ,  y ) .  The t o t a l  p r o b -  
a b i l i t y  o f  i n t e r a c t i o n  w i t h  p r e v i o u s  N p a r t i c l e s  which  r em a in  t h e r m a l l y  a c t i v e  has  t h e  form 
[2] 

P(N) = d~id~h.., d~d~NXIP(~i, p(x,y)dxdy, ( 1 . 2 )  

Here  g l ,  n l  . . . .  ,~N, qN a r e  t h e  c o o r d i n a t e s  o f  t h e  c e n t e r s  N o f  d i s k s  o f  r a d i i  R l o c a t e d  on 
t h e  s u b s t r a t e  in  a t h e r m a l l y  a c t i v e  s t a t e ;  O i s  t h e  r e g i o n  o f  t h e  s u b s t r a t e  o c c u p i e d  by N 
d i s k s .  

Below,  we p r e s e n t  an e f f e c t i v e  method o f  s p e c i f y i n g  t h e  r e g i o n  Q and c a l c u l a t i n g  ( 1 . 2 ) .  
We i n t r o d u c e  p i e c e w i s e - c o n s t a n t  f u n c t i o n s  E i and El :  (x, Y)~CR(~i ,  Hi), i = l ,  2 . . . . .  N,  where  
CR(~i ,  h i )  i s  a c i r c l e  o f  r a d i u s  R - w i t h  t h e  c e n t e r  ( g i ,  q i ) ,  w h i l e  E i = 0 o u t s i d e  t h i s  

N 

circle, E(x,y) = i--I~(l--E~) �9 It is evident that E = i inside Q and 2 = 0 outside Q. We 
k=l 

rewrite (1.2) by means of Z: 

P(N) = d~tdBl... I 3 d~NdBN~-Jp(~,BO Ep(x,y)dxdg. ( 1 . 3 )  

Changing the order of integration in (1.3), we obtain 

P (N) = t - -  SS p (x, y) [l -- I (x, y)]N dx dy; ( 1 . 4 )  

I(x,g)= ~ E~p(~,,nOd~idn~= ~ ~ p(~,ni)d~dn,. ( 1 . 5 )  
--~ CR(x ,Y) 

2. S i n c e  p ( x ,  y)  < 1, we c o n c l u d e  f rom ( 1 . 5 )  t h a t  I ( x ,  y )  < ~02E 2. With a h i g h  d e g r e e  
o f  a c c u r a c y ,  we f i n d  f rom ( 1 . 1 ) ,  ( 1 . 4 )  t h a t  

P (N) = [ S p (x, y) exp ( - -  IE~/E ~) dx dy, E~ = E2N. (2.1) 

L e t  us  c a l c u l a t e  P(N) f o r  t h e  c a s e  when t h e  p r o b a b i l i t y  o f  t h e  i n c i d e n c e  o f  a p a r t i c l e  
i n  t h e  d e p o s i t i o n  s p o t  i s  t h e  same f o r  a l l  ( x ,  y ) .  From ( 1 . 4 ) - ( 1 . 5 ) ,  ( 2 . 1 )  we h av e  
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, = b (N)  = 1 - -  (1 - -  N 1 - -  exp ( - -  = Po ( E g ) .  ( 2 . 2 )  

Now we take p(x, y) = p0(x, y) = exp-[(x 2 + yi)/pz]/(wpi) from [2]. From (1.4) we obtain 

N ~ 
P ( N ) = ~  Pj, Pj (-- l /+l j jN!/(]!(N--  ])!),Jji= j j p(x,y)IJ(x,y)dxdy. (2.3-) 

j = l  _ ~  

We ca lcu la te  the exact  value of  PI .  I t  should be noted t ha t  P, agrees w i t h  the analogous 
q u a n t i t y  obtained by approximat ion in  [ 2 ] .  We s u b s t i t u t e  the va r i ab les  o f  i n t e g r a t i o n  as 
follows in (1.5) 

= ~ i - - X ,  ~ = ~ i - - Y ;  X = r l C O S  O, y = r, sin 0; ( 2 . 4 )  
= r c o s 0 ,  N = r s i n 0 ;  e l =  r/p, e =  r/9. 

We f i n d  from ( 1 . 5 )  and ( 2 . 4 )  t h a t  
E 

I (x, y) = 1, (E, e~) = exp ( - -  e~) ~ ~ (--  2eel) exp (- -  e 2) de s, 
0 (2.5) 

2~ 

Io ( - - i e s , )  = S e x p ( - - i e e ,  cos~)d~. 
0 

It is evident from (2.5) that I 0 is a modified zeroth-order Bessel function. Thus, 

I 0 (--  2we,) = 2 (se,)~/(k!) ~. ( 2 . 6 )  
k = 0  

Using a f o r m u l a  f o r  e x p a n s i o n  exp (E 2) i n t o  a s e r i e s ,  we f i n d  f rom ( 2 . 3 ) ,  ( 2 . 5 ) ,  and ( 2 . 5 )  
t h a t  

P / N  = I --  exp (--E2/2). ( 2 . 7 )  

To w i t h i n  t e rms  o f  t h e  o r d e r  o f  0 ( E 4 ) ,  we o b t a i n  t h e  f o l l o w i n g  from ( 2 . 7 )  

P1 = E~/2. (2 .8)  

P a r t i c l e s  which  l and  o u t s i d e  t h e  d e p o s i t i o n  s p o t  r ebound  f rom t h e  s u b s t r a t e .  I t  i s  
t h e r e f o r e  b e s t  i f  we r e p l a c e  p 0 ( x ,  y)  by p ( x ,  y ) ,  which  i s  n o n t r i v i a l  o n l y  w i t h i n  t h e  s p o t ,  
i . e . ,  p ( x ,  y)  = E i p 0 ( x ,  y ) / < p 0 ( x ,  y)> = p 0 ( x ,  y ) / ( ~ p i ( 1  - l / e ) )  i f  (x, g ) ~ C 0 ( 0 ,  0). g e r e ,  
i n s t e a d  o f  G we need  to  t a k e  gG (where  ~ i s  t h e  powder  u s e  c o e f f i c i e n t ) .  In  t h e  p r e s e n t  
c a s e ,  e , ~ l ,  and t o  w i t h i n  t e rms  o f  t h e  o r d e r  o f  O(E~E 2) we f i n d  from ( 2 . 1 )  and ( 2 . 5 )  t h a t  

P (N) = i - -  ( t  - -  exp ( - -  E~)) exp ( - -  E~/(e -- i))/E~. ( 2 . 9 )  

3. Le t  us  d e t e r m i n e  t h e  r a n g e  o f  E~ under  normal  d e p o s i t i o n  c o n d i t i o n s  [ 1 ] .  Suppose  
t h a t  t a i s  t h e  t ime  o f  t h e r m a l  a c t i v i t y  o f  a d e p o s i t e d  p a r t i c l e .  Then 

~ata = 4aB~yN/3, (3 .1)  

where y is density; N is the number of particles which adhere to the substrate during the 
time t a. In accordance with (2.1), E~ ~ i0 -2 When P(N) ~ i, a layer of deposited material 
of the thickness h should be located on the substrate. Thus, ~Gt a ~ ~pihy and E~ ~ i. It 
follows from this that during deposition the parameter E~ goes from a value which is much 
less than unity [and corresponds to very small values of P(N)] to values of the order of unity 
[which corresponds to P(N) ~ i]. 

It is interesting to calculate E~ in terms of the values of h and t a reported in [i] - 
specifically, the values obtained in [i] using the assumption 

h = 2R 0 -- ta(l -- ~)U, t a = h2/(4a2al). (3.2) 

Here, v is the velocity of a drop at the moment of impact; ~ is a coefficient which char- 
acterizes the stiffness of a particle and depends on the collision velocity and material of 
the particles; a, is the diffusivity of the particle material; a,~<l is a dimensionless 
parameter. It follows from (2.1), (3.1), and (3.2) that 

~ ~G [ I ~  fl t ( i  -- ~)5-viv2 + 2alal R~ ] ( 1  -- ~t) v ( 3 . 3 )  E o  = - 2 (,  - o + V " 

4. We calculated the probability P0(E~) of the interaction of particles being deposited 
during the period of their thermal activation. This probability was calculated in the form 
(2.9) for the real-valued function p(x, y) to within terms of the order of O(E~Ei); P0 
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depends on the parameter E~. We obtained Eq. (3.3) on the basis of Eqs. (3.2) (which were 
in turn taken from [i]) as an example of deposition parameters which might influence the value 
of E~. 

Figure i shows the relations P0(E~): line 1 corresponds to (2.9), line 2 corresponds to 
(2.2), and line 3 corresponds to (2.8). Curves i and 2 are close despite the substantial dif- 
ference in the probability densities. It can be suggested on the basis of these two curves 
and Eq. (2.1) that the relations P0(E~) will not differ very much from one another for dif- 
ferent values of the real probability densities - as occurs in the figure. We should also 
note that even if PI had been calculated exactly in [2] (as we did here), there would still 
be a significant difference from the actual values of P0 (see Fig. i). This, of course, has 
to do with the fact that the assumption made in [2] that N thermally active particles are 
not in contact with one another is invalid for P0 ~ i. 

Let us show how (2.9) can be used to optimize the conditions for the process when a 
coating is deposited on thermally active particles. Proceeding on the basis of the defini- 
tion of P(N), we have 

P(N)'= i--*N. (4.1) 

Here, c N is the relative area of the deposition spot not occupied by N disks - in other words, 
surface porosity on the substrate in the case of the deposition of N disks on it. For de- 
position to take place on thermally active particles, it is necessary that N > S, where S is 
found from Eq. (4.1) with N = S and e S is the actual surface porosity of the coating on the 
substrate. Since P(N) is a monotonically increasing function of the argument N, then for N > S 
it is necessary that 

P ( N )  = i --eN = P o ( E ~ ) >  P ( S ) =  i--es. (4.2) 

Inserting (2.9) into (4.2), we obtain the condition of optimality of the coating deposition 
process: 

I -- (i -- exp (-- E~)) exp (-- E~/(e -- I))/E~ > i -- ~s. (4.3) 

Instead of (4.3), we can use graph I (see Fig. i). For this, we assign e S and calculate the 
probability P0(E~) = i - e S. We then find E~, for this probability on the x axis. Satis- 
faction of the optimality condition requires that Eg > E~,. For example, if E~ is calculated 
from (3.3), then the optimality of the process can be regulated with the parameters 6, G, y, 

p, /~, V, R0, ~, a I. 

It should also be noted that the left side of inequality (4.2) is the theoretical de- 
pendence of porosity ~N on the dimensionless argument E~. 
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