The strength of a coating can be increased if deposition is carried out in such a way that the constituent particles are deposited on top of previously deposited particles that are still cooling (are thermally active) [1]. The probability conditions for the formation of coatings of thermally active coatings were calculated in [2] with the assumption that N previously deposited particles are not in contact with one another.

In the present study, we calculate the probability P_{0} throughout a range of rates of flow $G(\mathrm{~kg} / \mathrm{sec})$. It is shown that P_{0} is expressed linearly through the porosity of the coating and depends on the dimensionless parameter $E_{0}^{2}=N R^{2} / \rho^{2}$ (where R is the radius of the disk of an adherent particle and ρ is the radius of the deposition spot).

1. In plasma-spray deposition, an attempt is made to use particles of similar dimensions. The radii R_{0} of spherical particles equal in volume to the dedosited particles lie within the range $10-100 \mu \mathrm{~m}$, while $\rho \sim 10^{-2} \mathrm{~m}$. Thus $\mathrm{R}_{0}^{2} / \rho^{2} \sim 10^{-6}-10^{-4}$. As in [2], we will assume that the coating is formed of disks of radius R and height h such that

$$
\begin{equation*}
4 \pi R_{0}^{3} / 3=\pi R^{2} h, E^{2}=R^{2} / \rho^{2} \ll 1 \tag{1.1}
\end{equation*}
$$

Let $p(x, y)$ be the probability density of the location of the center of mass of a particle being deposited at the point of the substrate with the coordinates (x, y). The total probability of interaction with previous N particles which remain thermally active has the form [2]

$$
\begin{equation*}
P(N)=\int_{-\infty}^{\infty} \int_{-\infty} d \xi_{1} d \eta_{1} \ldots \int_{-\infty}^{\infty} \int_{-\infty} d \xi_{N} d \eta_{N} \prod_{i=1}^{N} p\left(\xi_{i}, \eta_{i}\right) \iint_{Q\left(\xi_{1}, \eta_{1}, \ldots, \xi_{N}, \eta_{N^{\prime}}\right)} p(x, y) d x d y \tag{1.2}
\end{equation*}
$$

Here $\xi_{1}, \eta_{1}, \ldots, \xi_{N}, \eta_{N}$ are the coordinates of the centers N of disks of radii R located on the substrate in a thermally active state; Q is the region of the substrate occupied by N disks.

Below, we present an effective method of specifying the region Q and calculating (1.2). We introduce piecewise-constant functions E_{i} and $\Sigma_{i}:(x, y) \in C_{R}\left(\xi_{i}, \eta_{i}\right), i=1,2, \ldots, N$, where $C_{R}\left(\xi_{i}, \eta_{i}\right)$ is a circle of radius R with the center $\left(\xi_{i}, \eta_{i}\right)$, while $E_{i}=0$ outside this circle, $\Sigma(x, y)=1-\prod_{k=1}^{N}\left(1-E_{k}\right)$. It is evident that $\Sigma=1$ inside Q and $\Sigma=0$ outside Q. We rewrite (1.2) by means of Σ :

$$
\begin{equation*}
P(N)=\int_{-\infty}^{\infty} \int_{\infty} d \xi_{1} d \eta_{1} \ldots \int_{-\infty}^{\infty} \int_{-\infty} d \xi_{N} d \eta_{N} \prod_{i=1}^{N} p\left(\xi_{i}, \eta_{i}\right) \int_{-\infty}^{\infty} \int_{\infty} \Sigma p(x, y) d x d y \tag{1.3}
\end{equation*}
$$

Changing the order of integration in (1.3), we obtain

$$
\begin{gather*}
P(N)=1-\int_{-\infty}^{\infty} \int_{-\infty} p(x, y)[1-I(x, y)]^{N} d x d y \tag{1.4}\\
I(x, y)=\int_{-\infty}^{\infty} \int_{i} E_{i} p\left(\xi_{i}, \eta_{i}\right) d \xi_{i} d \eta_{i}=\int_{C_{R}(x, y)} p\left(\xi_{i}, \eta_{i}\right) d \xi_{i} d \eta_{i} . \tag{1.5}
\end{gather*}
$$

2. Since $p(x, y)<1$, we conclude from (1.5) that $I(x, y)<\pi \rho^{2} E^{2}$. With a high degree of accuracy, we find from (1.1), (1.4) that

$$
\begin{equation*}
P(N)=\int_{-\infty}^{\infty} \int_{0} p(x, y) \exp \left(-I E_{0}^{2} / E^{2}\right) d x d y, \quad E_{0}^{2}=E^{2} N \tag{2.1}
\end{equation*}
$$

Let us calculate $P(N)$ for the case when the probability of the incidence of a particle in the deposition spot is the same for all (x, y). From (1.4)-(1.5), (2.1) we have

Tomsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 26-29, January-February, 1992. Original article submitted May 15, 1990; revision submitted October 18, 1990.

$$
\begin{equation*}
I=E^{2}, \dot{P}(N)=1-\left(1-E^{2}\right)^{N} \cong 1-\exp \left(-E_{0}^{2}\right)=P_{0}\left(E_{0}^{2}\right) \tag{2.2}
\end{equation*}
$$

Now we take $p(x, y)=p_{0}(x, y)=\exp -\left[\left(x^{2}+y^{2}\right) / \rho^{2}\right] /\left(\pi \rho^{2}\right)$ from [2]. From (1.4) we obtain

$$
\begin{equation*}
P(N)=\sum_{j=1}^{N} P_{j}, P_{j}=(-1)^{j+1} J_{j} N!/(j!(N-j)!), J_{j}=\int_{-\infty}^{\infty} \int_{-\infty} p(x, y) I^{j}(x, y) d x d y . \tag{2.3}
\end{equation*}
$$

We calculate the exact value of P_{1}. It should be noted that P_{1} agrees with the analogous quantity obtained by approximation in [2]. We substitute the variables of integration as follows in (1.5)

$$
\begin{gather*}
\xi=\xi_{i}-x, \eta=\eta_{i}-y ; x=r_{1} \cos \theta, y=r_{1} \sin \theta \tag{2.4}\\
\xi=r \cos \theta, \eta=r \sin \theta ; \varepsilon_{1}=r_{1} \rho, \varepsilon=r / \rho
\end{gather*}
$$

We find from (1.5) and (2.4) that

$$
\begin{gather*}
I(x, y)=I_{1}\left(E, \varepsilon_{1}\right)=\exp \left(-\varepsilon_{1}^{2}\right) \int_{0}^{\mathrm{E}} I_{0}\left(-2 \varepsilon \varepsilon_{1}\right) \exp \left(-\varepsilon^{2}\right) d \varepsilon^{2} \tag{2.5}\\
I_{0}\left(-2 \varepsilon \varepsilon_{1}\right)=\int_{0}^{2 \pi} \exp \left(-2 \varepsilon \varepsilon_{1} \cos \varphi\right) d \varphi
\end{gather*}
$$

It is evident from (2.5) that I_{0} is a modified zeroth-order Bessel function. Thus,

$$
\begin{equation*}
I_{0}\left(-2 \varepsilon \varepsilon_{1}\right)=\sum_{k=0}^{\infty}\left(\varepsilon \varepsilon_{1}\right)^{2 k} /(k!)^{2} \tag{2.6}
\end{equation*}
$$

Using a formula for expansion $\exp \left(E^{2}\right)$ into a series, we find from (2.3), (2.5), and (2.6) that

$$
\begin{equation*}
P_{1} / N=1-\exp \left(-E^{2} / 2\right) . \tag{2.7}
\end{equation*}
$$

To within terms of the order of $O\left(E^{4}\right)$, we obtain the following from (2.7)

$$
\begin{equation*}
P_{1}=E_{0}^{2} / 2 \tag{2.8}
\end{equation*}
$$

Particles which land outside the deposition spot rebound from the substrate. It is therefore best if we replace $p_{0}(x, y)$ by $p(x, y)$, which is nontrivial only within the spot, i.e., $p(x, y)=E^{2} p_{0}(x, y) /\left\langle p_{0}(x, y)\right\rangle=p_{0}(x, y) /\left(\pi \rho^{2}(1-1 / e)\right)$ if $(x, y) \in C_{\rho}(0,0)$. Here, instead of G we need to take βG (where β is the powder use coefficient). In the present case, $\varepsilon_{1} \leqslant 1$, and to within terms of the order of $O\left(\mathrm{E}_{0}^{2} \mathrm{E}^{2}\right)$ we find from (2.1) and (2.5) that

$$
\begin{equation*}
P(N)=1-\left(1-\exp \left(-E_{0}^{2}\right)\right) \exp \left(-E_{0}^{2} /(e-1)\right) / E_{0}^{2} . \tag{2.9}
\end{equation*}
$$

3. Let us determine the range of E_{0}^{2} under normal deposition conditions [1]. Suppose that t_{a} is the time of thermal activity of a deposited particle. Then

$$
\begin{equation*}
\beta G t_{\mathrm{a}}=4 \pi R_{0}^{3} \gamma N / 3, \tag{3.1}
\end{equation*}
$$

where γ is density; N is the number of particles which adhere to the substrate during the time t_{a}. In accordance with (2.1), $\mathrm{E}_{0}^{2} \sim 10^{-2}$. When $\mathrm{P}(\mathrm{N}) \sim 1$, a layer of deposited material of the thickness h should be located on the substrate. Thus, $\beta G t_{a} \sim \pi \rho^{2} h \gamma$ and $E_{0}^{2} \sim 1$. It follows from this that during deposition the parameter E_{0}^{2} goes from a value which is much less than unity [and corresponds to very small values of $P(N)$] to values of the order of unity [which corresponds to $\mathrm{P}(\mathrm{N}) ~ \sim 1]$.

It is interesting to calculate E_{0}^{2} in terms of the values of h and t_{a} reported in [1]specifically, the values obtained in [1] using the assumption

$$
\begin{equation*}
h=2 R_{0}-t_{\mathrm{a}}(1-\mu) v, t_{\mathrm{a}}=h^{2} /\left(4 \alpha^{2} a_{1}\right) . \tag{3.2}
\end{equation*}
$$

Here, v is the velocity of a drop at the moment of impact; μ is a coefficient which characterizes the stiffness of a particle and depends on the collision velocity and material of the particles; a_{1} is the diffusivity of the particle material; $\alpha_{1} \leqslant 1$ is a dimensionless parameter. It follows from (2.1), (3.1), and (3.2) that

$$
\begin{equation*}
E_{0}^{2}=\frac{\beta G}{\pi \gamma \rho^{2}}\left[-\frac{1}{2(1-\mu) v}+\sqrt{\frac{1}{(1-\mu)^{2} v^{2}}+\frac{R_{0}}{2 \alpha^{2} a_{1}(1-\mu) v}}\right] . \tag{3.3}
\end{equation*}
$$

4. We calculated the probability $\mathrm{P}_{0}\left(\mathrm{E}_{0}^{2}\right)$ of the interaction of particles being deposited during the period of their thermal activation. This probability was calculated in the form (2.9) for the real-valued function $p(x, y)$ to within terms of the order of $O\left(E_{0}^{2} E^{2}\right) ; P_{0}$

depends on the parameter E_{0}^{2}. We obtained Eq. (3.3) on the basis of Eqs. (3.2) (which were in turn taken from [1]) as an example of deposition parameters which might influence the value of E_{0}^{2}.

Figure 1 shows the relations $\mathrm{P}_{0}\left(\mathrm{E}_{0}^{2}\right)$: line 1 corresponds to (2.9), line 2 corresponds to (2.2), and line 3 corresponds to (2.8). Curves 1 and 2 are close despite the substantial difference in the probability densities. It can be suggested on the basis of these two curves and Eq. (2.1) that the relations $P_{0}\left(E_{0}^{2}\right)$ will not differ very much from one another for different values of the real probability densities - as occurs in the figure. We should also note that even if P_{1} had been calculated exactly in [2] (as we did here), there would still be a significant difference from the actual values of P_{0} (see Fig. 1). This, of course, has to do with the fact that the assumption made in [2] that N thermally active particles are not in contact with one another is invalid for $P_{0} \sim 1$.

Let us show how (2.9) can be used to optimize the conditions for the process when a coating is deposited on thermally active particles. Proceeding on the basis of the definition of $\mathrm{P}(\mathrm{N})$, we have

$$
\begin{equation*}
P(N)=1-\varepsilon_{N} . \tag{4.1}
\end{equation*}
$$

Here, ε_{N} is the relative area of the deposition spot not occupied by N disks - in other words, surface porosity on the substrate in the case of the deposition of N disks on it. For deposition to take place on thermally active particles, it is necessary that $\mathrm{N}>\mathrm{S}$, where S is found from Eq. (4.1) with $N=S$ and ε_{S} is the actual surface porosity of the coating on the substrate. Since $P(N)$ is a monotonically increasing function of the argument N, then for $N>S$ it is necessary that

$$
\begin{equation*}
P(N)=1-\varepsilon_{N}=P_{0}\left(E_{0}^{2}\right)>P(S)=1-\varepsilon_{S} . \tag{4.2}
\end{equation*}
$$

Inserting (2.9) into (4.2), we obtain the condition of optimality of the coating deposition process:

$$
\begin{equation*}
1-\left(1-\exp \left(-E_{0}^{2}\right)\right) \exp \left(-E_{0}^{2} /(e-1)\right) / E_{0}^{2}>1-\varepsilon_{s} . \tag{4.3}
\end{equation*}
$$

Instead of (4.3), we can use graph 1 (see Fig. 1). For this, we assign ε_{S} and calculate the probability $P_{0}\left(E_{0}^{2}\right)=1-\varepsilon_{S}$. We then find $E_{0 *}^{2}$ for this probability on the x axis. Satisfaction of the optimality condition requires that $\mathrm{E}_{0}^{2}>\mathrm{E}_{0 \%}^{2}$. For example, if E_{0}^{2} is calculated from (3.3), then the optimality of the process can be regulated with the parameters β, G, γ, $\rho, \mu, v, R_{0}, \alpha, a_{1}$.

It should also be noted that the left side of inequality (4.2) is the theoretical dependence of porosity ε_{N} on the dimensionless argument E_{0}^{2}.

LITERATURE CITED

1. V. V. Kudinov and V. M. Ivanov, Application of Refractory Plasma Coatings [in Russian], Mashinostroenie, Moscow (1981).
2. V. V. Kudinov and V. E. Belashchenko, "Effect of process parameters on conditions of the formation of a coating and the distribution of its thickness during deposition," Fiz. Khim. Obrab. Mater., No. 6 (1977).
