PROBABILITY OF FORMATION OF COATINGS OF THERMALLY ACTIVE PARTICLES
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The strength of a coating can be increased if deposition is carried out in such a way that
the constituent particles are deposited on top of previously deposited particles that are still
cooling (are thermally active) [1]. The probability conditions for the formation of coatings of
thermally active coatings were calculated in [2] with the assumption that N previously de-
posited particles are not in contact with one another.

In the present study, we calculate the probability P, throughout a range of rates of
flow G (kg/sec). It is shown that P, is expressed linearly through the porosity of the coat-
ing and depends on the dimensionless parameter E} = NR?/p? (where R is the radius of the disk
of an adherent particle and p is the radius of the deposition spot).

1. 1In plasma-spray deposition, an attempt is made to use particles of similar dimen-
sions. The radii R, of spherical particles equal in volume to the deposited particles lie
within the range 10-100 um, while p ~ 1072m. ThusR3/p%2 ~ 107%-10""%. As in [2], we will
assume that the coating is formed of disks of radius R and height h such that

4uR3[3 = nR%*h, E* = R¥Yp* < 1. (1.1)
Let p(x, y) be the probability density of the location of the center of mass of a particle
being deposited at the point of the substrate with the coordinates (x, y). The total prob-
ability of interaction with previous N particles which remain thermally active has the form
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pe)=Jfazan .. [favandlpEn)  §  peydedy. (1.2)
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Here £;, N1,...,EN, NN are the coordinates of the centers N of disks of radii R located on
the substrate in a thermally active state; Q is the region of the substrate occupied by N
disks.

Below, we present an effective method of specifying the region Q and calculating (1.2).
We introduce piecewise-constant functions E; and Ij: (z, y) = Cr(&, W), i =1, 2, ..., N, where
Cr(gg, ny) is a circ%e of radius R-with the center (£;, nj), while E; = 0 outside this
circle, Z(z, y)=1—-kII(1_‘Ek)- It is evident that T = 1 inside Q and T = 0 outside Q. We
=1
rewrite (1.2) by means of I:

o0

P =| [ drdn, ... ij’dgwdnnﬁp(gi,najSZp(x,wdxdy. (1.3)

Changing the order of integration in (1.3), we obtain
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Py =1—{ [ p@ntt —I @y dedy (1.4)
Iy = { Eip (@i dzedn: = S(S P (&) dEs . (1.5)
—o0 Cp(x,y)

2. Since p(x, y) < 1, we conclude from (1.5) that I(x, y) < wp?E?. With a high degree
of accuracy, we find from (1.1), (1.4) that

P(N)=(Sp(x,y)exp(-—IEg/Ez)dxdy, EX = E2N. (2.1)
Let us calculate P(N) for the case when the probability of the incidence of a particle
in the deposition spot is the same for all (x, y). From (1.4)-(1.5), (2.1) we have
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[=E, P(N)=1—(1 —E%)" =1 _exp(— E2) = P, (E2). (2.2)
Now we take p(x, y) = po(x, y) = exp—[(x? + y?)/p?1/(wp?) from [2]. From (1.4) we obtain

N ] oo ;
POy =3 Py Py = (— VP LNUG N = D). Ti= [ [ p @) Iy dady. (2.3)

We calculate the exact value of P,. It should be noted that P, agrees with the analogous

quantity obtained by approximation in [2]. We substitute the variables of integration as
follows in (1.5)

E=E —a,m=1n; —Yy; z=ryco8 0, y=r;sin6;

(2.4)
E=rcos B, n=rsinl; g =r/p, £€=rip.
We find from (1.5) and (2.4) that
E
I (z,y) =1, (E, &) = exp(— &) | I, (— 2ee,) exp(— e?) de?,
0 (2.5)
n
I, (— 2ee,) = j exp (— 2eg, cos @) do.
0
It is evident from (2.5) that I, is a modified zeroth-order Bessel function. Thus,
Iy (— 2ee;) = 3% (e)™/(K!)™. (2.6)
k=0

Using a formula for expansion exp (E?) into a series, we find from (2.3), (2.5), and (2.6)
that

PN =1 — exp (—E¥2). (2.7)
To within terms of the order of O(E*), we obtain the following from {2.7)
P, = E2/2. (2.8)

Particles which land outside the deposition spot rebound from the substrate. It is
therefore best if we replace p,(x, y) by p(x, y), which is nontrivial only within the spot,
i.e., p(x, y) = E2py(x, y)/<p,(x, ¥)> = po(x, y)/(wp?(1 — 1/e)) if (x, y) & Co(0, 0). Here,
instead of G we need to take BG (where B is the powder use coefficient). In the present
case, & <1, and to within terms of the order of O(EZE?) we find from (2.1) and (2.5) that

P(N)=1—(1—exp(— E3))exp(— Eif(e — 1))/ B2 (2.9)

3. Let us determine the range of E} under normal deposition conditions [1]. Suppose
that t, is the time of thermal activity of a deposited particle. Then

BGt, = 4nR3yN/3, (3.1)

where y is density; N is the number of particles which adhere to the substrate during the

time t,. In accordance with (2.1), E} ~ 1072, When P(N) ~ 1, a layer of deposited material
of the thickness h should be located on the substrate. Thus, BGt, ~ mp’hy and Ej ~ 1. It
follows from this that during deposition the parameter EZ goes from a value which is much

less than unity [and corresponds to very small values of P(N)] to values of the order of unity
[which corresponds to P(N) ~ 1].

It is interesting to calculate E} in terms of the values of h and t, reported in [1] —
specifically, the values obtained in [1] using the assumption

h= 2R, — ta(1 — wo, t, = h¥/(4a’a,). (3.2)

Here, v is the velocity of a drop at the moment of impact; p is a coefficient which char-
acterizes the stiffness of a particle and depends on the collision velocity and material of
the particles; a; is the diffusivity of the particle material; «;<{1 is a dimensionless
parameter. It follows from (2.1), (3.1), and (3.2) that

_eef L /1 , (3.3)
_TWPZ[ 2(1-—-.“)11“[_‘/ (1“}*)2”2—1_ 20&2421(1-}&)17 .

4, We calculated the probability P,(E3) of the interaction of particles being deposited
during the period of their thermal activation. This probability was calculated in the form
(2.9) for the real-valued function p(x, y) to within terms of the order of O(EZE?); P,

E
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depends on the parameter EZ. We obtained Eq. (3.3) on the basis of Eqs. (3.2) (which were
in turn taken from [1]) as an example of deposition parameters which might influence the value
of EZ.

Figure 1 shows the relations P (E3): line 1 corresponds to (2.9), line 2 corresponds to
(2.2), and line 3 corresponds to (2.8). Curves 1 and 2 are close despite the substantial dif-
ference in the probability densities. It can be suggested on the basis of these two curves
and Eq. (2.1) that the relations P,(E2) will not differ very much from one another for dif-
ferent values of the real probability densities — as occurs in the figure. We should also
note that even if P, had been calculated exactly in [2] (as we did here), there would still
be a significant difference from the actual values of P, (see Fig. 1). This, of course, has
to do with the fact that the assumption made in [2] that N thermally active particles are
not in contact with one another is invalid for P, ~ 1.

Let us show how (2.9) can be used to optimize the conditions for the process when a
coating is deposited on thermally active particles. Proceeding on the basis of the defini-
tion of P(N), we have

P(N)= 1 — ey. (4.1)

Here, ey is the relative area of the deposition spot not occupied by N disks — in other words,
surface porosity on the substrate in the case of the deposition of N disks on it. For de-
position to take place on thermally active particles, it is necessary that N > S, where S is
found from Eq. (4.1) with N = S and eg is the actual surface porosity of the coating on the
substrate. Since P(N) is a monotonically increasing function of the argument N, then for N> §

it is necessary that

P(N)=1—ey =P (E)>P(S) =1 —es. (4.2)

Inserting (2.9) into (4.2), we obtain the condition of optimality of the coating deposition
process:

1 — (1 —exp(~ Eq)) exp (— Eif(e — 1)/ Es>1 —es. (4.3)

Instead of (4.3), we can use graph 1 (see Fig. 1). For this, we assign eg and calculate the
probability P,(EZ) = 1 — €g. We then find EJ, for this probability on the x axis. Satis-
faction of the optimality condition requires that E3 > EZ,. For example, if Ej is calculated
from (3.3), then the optimality of the process can be regulated with the parameters 8, G, Y,
P, My, Vv, Ry, 0, a,.

It should also be noted that the left side of inequality (4.2) is the theoretical de-
pendence of porosity ey on the dimensionless argument EZ.
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